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A catalyst-free highly efficient synthesis of 3(5)-amino-5(3)-(het)aryl-1,2,4-triazoles in aqueous medium
was performed using conventional heating and microwave irradiation. The tautomerism in the products
was investigated using NMR spectroscopy and X-ray crystallography. The effects of the substitution, tem-
perature, solvents, and concentration on the tautomerism were studied. The triazoles were found to exist
in 1H-forms, the 4H-form was not observed either in solid state or in solution. In general, 5-amino-1,2,4-

triazoles were electronically preferred in the tautomeric equilibrium, but some exceptions from the
established relationship were also identified.
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1,2,4-Triazoles represent a class of heterocyclic compounds of
significant importance in agriculture and medicine.! They are also
used in metalloorganic chemistry as polyfunctional ligands.?
Among 1,2,4-triazoles, 3(5)-amino-1,2,4-triazoles have been recog-
nized, primarily, as valuable synthons for the construction of more
complex structures, particularly biologically active fused heterocy-
cles (e.g., 1,2,4-triazolo[1,5-a]pyrimidines® and 1,2,4-triazolo[1,5-
a][1,3,5]triazines*).

The most straightforward and commonly used method for the
preparation of 3(5)-amino-1,2,4-triazoles 2 involves the cyclocon-
densation of amidoguanidines 1 (Scheme 1). However, the use of a
high temperature (often above the melting point)® or the presence
of a strong base’ in the reaction complicated the work-up and led
to decreased yields of the products. Herein we describe a method
which avoids these drawbacks and leads to 3(5)-amino-1,2,4-tria-
zoles via a simple and eco-friendly procedure.

Tautomerism in five-membered heterocyclic systems is an
intriguing phenomenon, which has been recognized for a long
time.® A knowledge of the tautomeric preferences and the factors
affecting the equilibrium are essential for understanding the reac-
tivity of compounds in chemical processes and their effects on
biological systems. Due to annular prototropic tautomerism,
1,2,4-triazoles, particularly amino-1,2,4-triazoles without substit-
uents on the ring nitrogen atoms, a priori can exist in three forms,
namely, 3-amino-1H-1,2,4-triazoles (A), 5-amino-1H-1,2,4-tria-
zoles (B), and 3-amino-4H-1,2,4-triazoles (C) (Scheme 2). A
number of theoretical reports” have appeared in the area of
tautomerism in amino-1,2,4-triazoles, but experimental studies
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have often ignored this phenomenon and some data were misin-
terpreted. In this Letter, we present a study on the tautomerism
in 3(5)-amino-5(3)-(het)aryl-1,2,4-triazoles using NMR spectros-
copy and X-ray crystallography.

Green chemistry, which is an essential part of process devel-
opment in modern chemistry, has also begun to influence medic-
inal chemistry significantly.® The design of an environmentally
friendly synthesis includes elaboration of methods able to avoid
or minimize the formation of byproducts, the selection of a safe
solvent, and effective use of energy. Water is considered to be
the best solvent for sustainable chemistry.!® We found that
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Table 1

Synthesis of triazoles 2a-j via cyclocondensation of amidoguanidines 1 under conventional heating

HN-N l/\I-NH
R~ NH, R/4N/)\NH2
O NH,
1 2
Triazole R Reaction time (h) Volume?® (ml) Yield (%) Mp (°C) (lit.)
2a Ph 4 20 97 186-187 (186-187)°¢
2b 4-MeCgH,4 4 20 98 209 (207)%
2c 4-MeOCgH, 8 40 96 226 (224-226)¢
2d 4-FCgH,4 3 20 95 188-189
2e 4-CICgH,4 6 60° 94 229-230 (227-229)>¢
2f 2-Furyl 6 20 95 211-212 (204-206)*°
2g 2-Thienyl 8 30 97 214
2h 2-Pyridyl 4 20 92 220-221 (217)%¢
2i 3-Pyridyl 6 20 98 224-225 (223)¢
2j 4-Pyridyl 6 20 98 272-274 (276-278)>¢

2 Volume of water per 1 g of 1.
P 40% ethanol was used as solvent.

Table 2
Optimization of the microwave-assisted synthesis of 2a

Ph NH; Ph~>\? ~NH
O NH, N 2
la 2a

Microwave power (W) Reaction time (s) Yield (%)

50 420 94
100 150 100
150 120 88
200 70 82

(het)arylamidoguanidines 1, upon heating in water, underwent
quantitative cyclocondensation with elimination of a water mol-
ecule affording 3(5)-amino-5(3)-(het)aryl-1,2,4-triazoles 2 (Table
1).!! The reaction provided the products in excellent purity and
did not require the presence of base or catalyst. The solubility of
the starting (het)arylamidoguanidines 1 was found to be a limit-

Table 3
Microwave-assisted synthesis of triazoles 2a-j in water, 100 W

HN-N N-NH
R_< >_N Ha R/« /)\ NH
O NH, N 2
1 2
Triazole R Reaction time (s) Yield (%)
2a Ph 150 100
2b 4-MeCgH4 165 100
2c 4-MeOCgH4 165 100
2d 4-FCgHy 150 90
2e 4-CICgHy4 180 100
2f 2-Furyl 165 100
2g 2-Thienyl 180 100
2h 2-Pyridyl 150 84
2i 3-Pyridyl 150 100
2j 4-Pyridyl 150 88

ing factor of the reaction and increasing the volume of water or
using a co-solvent (ethanol) was required for some less soluble
amidoguanidines 1. However, when ethanol was used as the sole
solvent instead of water, the conversion of 1a into 3(5)-amino-
5(3)-phenyl-1,2,4-triazole (2a) did not proceed to completion
even after 3 days of heating under reflux.

Microwave irradiation is an alternative source of energy,
which allows highly effective use of the heat produced, reduces
reaction times and often improves yields. Microwave-assisted
syntheses have found extensive applications in heterocyclic
chemistry,'? and a number of methods for the preparation of
1,2,4-triazoles using microwave irradiation have been reported.'?
However, no data on microwave-based syntheses of 3(5)-amino-
1,2,4-triazoles are available. Since water is an excellent solvent
for microwave-assisted reactions,'* and provided it is a suitable
medium for cyclocondensation of 1 under conventional heating,
we attempted to use it as a solvent in the microwave-initiated
synthesis. Four regimes with fixed microwave irradiation power
were applied using a CEM ‘Discover’ apparatus and 100 W was
found to be optimal microwave power for the cyclization of 1a
(Table 2).!> These conditions were then applied successfully for
the preparation of other 3(5)-amino-5(3)-(het)aryl-1,2,4-triazoles
(2) (Table 3). We attempted to prepare 2a by heating 1a in eth-
anol using similar irradiation conditions. However, a longer reac-
tion time (5 min) was required and the isolated yield was lower
(86%).

The structures of the compounds prepared and in particular
their tautomerism were investigated using both NMR spectros-
copy, which is considered to be the most informative and accu-
rate method for solutions,'® and X-ray crystallography, which
provides comprehensive structural information in the solid
state. 160

The 1,2,4-triazoles 2 were found to exist in amino forms; imino
forms were disfavored according to literature data.!” Of the three
tautomeric forms theoretically possible due to annular tautomer-
ism (Scheme 2), forms A and B were found to be present in the
solutions of triazoles 2, while form C was not observed under the
experimental conditions.

The equilibrium between the tautomers was established rap-
idly and the compositions did not change with time. Identical
spectra for the tautomeric system A-B were observed on dis-
solving the samples and after equilibration of the solution
overnight.
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Table 4
Tautomerism in 3(5)-amino-1,2,4-triazoles in DMSO-dg solution
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HN—I}I l/\l—NH

R \N)\NHZ R/<N/)\NH2

Triazole R 'H NMR signals of tautomeric forms A and B in DMSO-dg (0.1 M), ppm Kt —AGsos (k] mol~1)
3(5)-NH, N(1)-H
A B A B

2a Ph 5.29 6.05 13.20 12.04 8.2 5.2
2b 4-MeCgHy 5.25 6.01 13.09 11.96 6.1 44
2c 4-MeOCgH4 5.21 5.99 12.99 11.90 5.0 4.0
2d 4-FCgHy 5.31 6.04 13.18 12.05 14.2 6.6
2e 4-CICgH4 5.37 6.10 13.25 12.12 20.6 7.5
2f 2-Furyl 5.29 6.07 13.20 12.07 13.6 6.5
2g 2-Thienyl 5.34 6.09 13.16 12.02 229 7.8
2h 2-Pyridyl 5.33 6.08 13.45 12.23 1.6 1.2
2i 3-Pyridyl 5.42 6.18 13.41 12.22 25.2 8.0
2j 4-Pyridyl 5.48 6.22 13.64 12.35 30.1 8.4
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Figure 1. Correlation of -AG for the tautomeric equilibrium of 3-amino-5-aryl- and
5-amino-3-aryl-1,2,4-triazoles with the Hammett constant (o) of the R group.

The NH and NH, signals of tautomers A and B in the 'H NMR
spectra in DMSO were quite distinct allowing calculation of Ky
values (Table 4). 5-Amino-1,2,4-triazoles B were identified to
be the predominant tautomers. The substituent showed signifi-
cant effects on the equilibrium between tautomeric forms A
and B. This effect was strongly dependent on the electronic
properties of the substituents. It was found that the K; and
AGsyog values correlated well with the Hammett constants'® of
the substituents on the phenyl ring of 2a-e: —AG,g53=8.0860
+5.265, R* =0.998 (Fig. 1). Therefore, the thermodynamic stabil-
ity of form B in comparison with A increased together with the
electron-withdrawing properties of the substituents. This rela-
tionship could also be extended to some heterocyclic, that is,
3-pyridyl, 4-pyridyl, and 2-thienyl substituents at C3(5) of the
1,2,4-triazole ring. However, experimental results for compounds
2fh with 2-furyl and especially 2-pyridyl substituents at these
positions were outside this correlation. At first glance, this obser-

bonding between N1-H and the nitrogen atom of the pyridyl
and the oxygen atom of the furyl moieties in form A. The intra-
molecular hydrogen bonding N1-H---X (X =0, N) would prevent
movement of the tautomeric equilibrium toward ‘electronically’
favored form B despite the strong electron-withdrawing effect
of the heterocycles. However, this explanation became wide
open to criticism by detailed analysis of further experiments.
The signals of N(1)-H in the '"H NMR spectra appeared at the
same range and had similar line widths for all triazoles 2.
Increasing the concentration of the samples from 0.1 to 1.0 M
caused a ~0.2 ppm downfield shift of the signals (particularly
NH and NH,) in the '"H NMR spectra without affecting Kr. Heat-
ing the sample should disfavor systems stabilized by intramolec-
ular hydrogen bonding and would shift the equilibrium to form
B. However, no significant changes in Kt were observed for 2f,h
at elevated temperatures, similarly to triazoles 2 without poten-
tial intramolecular hydrogen bonding. The signals of the tautom-
ers A and B appeared clearly in the 'H NMR spectra in DMSO-dg
solution and coalesced only on heating (Fig. 2). Interestingly,
addition of nonpolar CDCl3 to the DMSO-dg solution of triazoles
2fh did not strengthen the intramolecular hydrogen bonding as
expected. In contrast, the rate of the tautomeric exchange be-
came too fast to be observed on the NMR time-scale. Only one
set of signals appeared in the NMR spectra when a mixture of
DMSO-dg and CDCl; (1:1) was used as solvent for the experi-
ment, as exemplified in Figure 2. Therefore, the “anomalous”
thermodynamic stability of tautomeric forms A for 2f,h as well
as the effect of solvents on the rate of tautomeric exchange is
still to be revealed.

Unsymmetrical 3,5-disubstituted 1,2,4-triazoles have been
known to crystallize in the form of the tautomer bearing an elec-
tron-acceptor substituent at position 3 and an electron-donor
substituent at position 5.'® Surprisingly, we found that the
presence of forms A and B in the crystal was possible even for
compounds bearing substituents with considerably different
electronic properties. Thus, two compounds, that is, 5-amino-3-
phenyl-1,2,4-triazole and 3-amino-5-phenyl-1,2,4-triazole (2a)
crystallized together in the same crystal (Fig. 3) despite the fact
that the Kr value for their equilibrium in DMSO-dg solution was
8.2. Conversely, 2h with a K; in DMSO-dg solution equal to 1.6,
crystallized solely as 5-amino-3-(pyridin-2-yl)-1,2,4-triazole
(form B) (Fig. 4).
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Figure 2. 'H NMR spectra (300 MHz) of 3(5)-amino-5(3)-(pyridin-2-yl)-1,2,4-triazole (2h) 0.1 M solution in DMSO-dg, 27 °C (a); 50 °C (b); 100 °C (c); 150°C (d); 0.1 M
solution in DMSO-dg-CDCl3 (1:1), 27 °C (e).

[ In conclusion, an efficient and environmentally friendly method
for the preparation of 3(5)-amino-1,2,4-triazoles has been devel-

SN oped and some aspects of the tautomerism in these compounds
I , have been described.
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